Testing the mean matrix in high-dimensional transposable data.
نویسندگان
چکیده
The structural information in high-dimensional transposable data allows us to write the data recorded for each subject in a matrix such that both the rows and the columns correspond to variables of interest. One important problem is to test the null hypothesis that the mean matrix has a particular structure without ignoring the dependence structure among and/or between the row and column variables. To address this, we develop a generic and computationally inexpensive nonparametric testing procedure to assess the hypothesis that, in each predefined subset of columns (rows), the column (row) mean vector remains constant. In simulation studies, the proposed testing procedure seems to have good performance and, unlike simple practical approaches, it preserves the nominal size and remains powerful even if the row and/or column variables are not independent. Finally, we illustrate the use of the proposed methodology via two empirical examples from gene expression microarrays.
منابع مشابه
Transposable Regularized Covariance Models with an Application to Missing Data Imputation.
Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a...
متن کاملTransposable Regularized Covariance Models with Applications to High-dimensional Data a Dissertation Submitted to the Department of Statistics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
High-dimensional data is becoming more prevalent with new technologies in biomedical sciences, imaging and the Internet. Many examples of this data often contain complex relationships between and among sets of variables. When arranged in the form of a matrix, this data is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we prese...
متن کاملA Generalized Least Squares Matrix Decomposition
Variables in high-dimensional data sets common in neuroimaging, spatial statistics, time series and genomics often exhibit complex dependencies that can arise, for example, from spatial and/or temporal processes or latent network structures. Conventional multivariate analysis techniques often ignore these relationships. We propose a generalization of the singular value decomposition that is app...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملDamped DQE Model Updating of a Three-Story Frame Using Experimental Data
In this paper, following a two-stage methodology, the differential quadrature element (DQE) model of a three-story frame structure is updated for the vibration analysis. In the first stage, the mass and stiffness matrices are updated using the experimental natural frequencies. Then, having the updated mass and stiffness matrices, the structural damping matrix is updated to minimize the error be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 71 1 شماره
صفحات -
تاریخ انتشار 2015